2,078 research outputs found

    Running surface couplings

    Get PDF
    We discuss the renormalization group improved effective action and running surface couplings in curved spacetime with boundary. Using scalar self-interacting theory as an example, we study the influence of the boundary effects to effective equations of motion in spherical cap and the relevance of surface running couplings to quantum cosmology and symmetry breaking phenomenon. Running surface couplings in the asymptotically free SU(2) gauge theory are found.Comment: 11 pages, Latex fil

    Phases of supersymmetric O(N) theories

    Full text link
    We perform a global renormalization group study of O(N) symmetric Wess-Zumino theories and their phases in three euclidean dimensions. At infinite N the theory is solved exactly. The phases and phase transitions are worked out for finite and infinite short-distance cutoffs. A distinctive new feature arises at strong coupling, where the effective superfield potential becomes multi-valued, signalled by divergences in the fermion-boson interaction. Our findings resolve the long-standing puzzle about the occurrence of degenerate O(N) symmetric phases. At finite N, we find a strongly-coupled fixed point in the local potential approximation and explain its impact on the phase transition. We also examine the possibility for a supersymmetric Bardeen-Moshe-Bander phenomenon, and relate our findings with the spontaneous breaking of supersymmetry in other models.Comment: 23 pages, 18 figure

    Relaxation measurements in the regime of the second magnetization peak in Nb films

    Full text link
    We report on magnetic measurements as a function of field, temperature and time (relaxation) in superconducting Nb films of critical temperature Tc = 9.25 K. The magnetic measurements as a function of field exhibited a second magnetization peak (SMP) which in general is accompanied by thermomagnetic instabilities (TMIs). The lines where the SMP occurs and where the first flux jump in the virgin magnetization curves is observed, end at a characteristic point (To,Ho)=(7.2 K,80 Oe). Relaxation measurements showed that for T<To=7.2 K the activation energy Uo and the normalized relaxation rate S exhibit non-monotonic behavior as a function either of temperature or field. The extrema observed in Uo and S coincide with the onset and the maximum points of the SMP. In the regime T>To=7.2 K both Uo and S present a conventional monotonic behavior. These results indicate that the SMP behavior observed in our Nb films is promoted by the anomalous relaxation of the magnetization.Comment: To appear in Physica

    Tomographic readout of an opto-mechanical interferometer

    Get PDF
    The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latter's susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. The complete tomographic reconstruction of the state of light requires the ability to readout arbitrary quadratures. Here we demonstrate such a readout by applying a balanced homodyne detector to an interferometric position measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout noise of \unit{1.9 \cdot 10^{-16}}{\metre/\sqrt{\hertz}} around the membrane's fundamental oscillation mode at \unit{133}{\kilo\hertz} has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.Comment: 7 pages, 5 figure

    An all-optical trap for a gram-scale mirror

    Get PDF
    We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical restoring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal noise; and we demonstrate the technique experimentally with a 1 gram mirror. The observed optical spring has an inferred Young's modulus of 1.2 TPa, 20% stiffer than diamond. The trap is intrinsically cold and reaches an effective temperature of 0.8 K, limited by technical noise in our apparatus.Comment: Major revision. Replacement is version that appears in Phy. Rev. Lett. 98, 150802 (2007

    Exploiting the convex-concave penalty for tracking: A novel dynamic reweighted sparse Bayesian learning algorithm

    Get PDF
    We propose a novel dynamic reweighted â„“2 (DRâ„“2) algorithm in the regime of dynamic compressive sensing. Our analysis shows that aiming to solve a Type II optimization problem, DRâ„“2 is effectively minimizing a `convex-concave' penalty in the coefficients that transitions from a convex region to a concave function using knowledge of past estimations. DRâ„“2 thus provides superior reconstruction performance compared with state-of-the-art dynamic CS algorithms.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/ICASSP.2014.685422
    • …
    corecore